Промышленный Machine Learning на больших данных (2020) Видеокурс
Вы освоите все необходимые навыки машинного обучения для потоковых данных и распределенной среды. В программу включены необходимые знания из областей Data Science и Data Engineering, которые позволят вам обрабатывать большие данные и писать распределенные алгоритмы на Spark.
Для кого этот курс?
-Для специалистов по Машинному обучению или Software инженеров, которые хотят научиться работать с большими данными. Обычно такие задачи имеются в крупных IT-компаниях с масштабным цифровым продуктом.
-Для Data Scientist, которые хотят усилить свой скиллсет инженерными навыками. Благодаря курсу вы будете уметь обрабатывать данные и самостоятельно выводить результаты ML-решений в продакшн.
Вы научитесь:
-Использовать стандартные инструменты ML-конвейеров в распределенной среде;
-Разрабатывать собственные блоки для ML-конвейеров;
-Адаптировать ML-алгоритмы к распределенной среде и инструментам big data;
-Использовать Spark, SparkML, Spark Streaming;
-Разрабатывать алгоритмы потоковой подготовки данных для машинного обучения;
-Обеспечивать контроль качества на всех этапах движения ML-решений в промышленную эксплуатацию.
Содержание:
01. Градиентный спуск и линейные модели
02. Обзор основных методов и метрик машинного обучения
03. Основы программирования на Scala
04. Распределенные хранилища
05. Эволюция параллельных алгоритмов
06. Менеджеры ресурсов в распределенных системах
07. Основы Apache Spark
08. Эволюция параллельных алгоритмов №2
09. Перенос МЛ-алгоритмов в распределенную среду
10. ML в Apache Spark
11. Разработка собственных блоков для SparkML
12. Сторонние библиотеки для использования со Spark
13. Оптимизация гиперпараметров и AutoML
14. Потоковая обработка данных
15. Spark Streaming
16. Структурный и непрерывный стриминг в Spark
17. Альтернативные потоковые фреймворки
18. Определение цели МЛ-проекта и предварительный анализ
19. Долгосрочные ML-цели на примере задачи уменьшения оттока
20. А-Б тестирование 1
21. А-Б тестирование 2
22. Подходы к выводу ML-решений в продакшн
23. Версионирование, воспроизводимость и мониторинг
24. Онлайн-сервинг моделей
25. Паттерны асинхронного потокового ML и ETL
26. Если надо Python
27. Альтернативные фреймворки с поддержкой Python
28. Production Code на Python. Организация и Packaging кода
29. REST-архитектура - Flask API
30. Docker - Структура, применение, деплой
31. Amazon Sagemaker
32. AWS ML Service
33. Нейросети
34. Распределенное обучение и инференс нейросетей
35. Градиентный бустинг на деревьях
Информация о видео
Название: Промышленный Machine Learning на больших данных
Автор: Дмитрий Бугайченко и др.
Год выхода: 2020
Жанр: Видеокурс
Язык: Русский
Выпущено: Россия
Продолжительность: 61:33:51
Файл
Формат: MP4 (+доп.файлы)
Видео: AVC, ~1684x900, ~1684 Kbps
Аудио: AAC, 128 Kbps, 48.0 KHz
Размер файла: 8.32 Gb
Скачать Промышленный Machine Learning на больших данных (2020) Видеокурс
|
|
Tweet |
|
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Процедура регистрации бесплатна и займет у вас всего пару минут!
После регистрации вам станет доступна информация скрытя фразой:
"Внимание! У вас нет прав для просмотра скрытого текста."
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Процедура регистрации бесплатна и займет у вас всего пару минут!
После регистрации вам станет доступна информация скрытя фразой:
Алгоритмы и структуры данных на Python. Базовый курс (2020) PCRec Курс учит понимать фундаментальные алгоритмы и использовать их для решения практических задач. Знакомит с методами анализа данных на Python и всеми необходимыми библиотеками. |
Big Data – обучение аналитиков с нуля (2020) Видеокурс Big data — инструменты, подходы и методы обработки огромных объёмов данных. По сути это альтернатива традиционным системам обработки данных. |
Pазработчик BigData (2018) Видеокурс Цель курса - освоить основные темы и инструменты, позволяющие находить полезную информацию в данных и внедрять ее использование в боевое окружение. |
Основы работы с большими данными: Data Science Orientation (2017) Видеокурс Этот курс – введение в сложную и многогранную область науки по работе с большими данными – Data Science. |
Big Data: основы работы с большими массивами данных (2017) Видеокурс В рамках данного курса мы ставили себе задачу дать необходимый уровень знаний и навыков, чтобы максимально снизить барьер вхождения в новую компетенцию. Курс наиболее полно охватывает концепцию больших данных, включая ее технические, бизнес и организационные стороны. |
0